снком. 6509

## Note

# **Cross-electrophoresis on paper of some inorganic systems**

The principle of cross-electrophoresis was first demonstrated by GRASSMANN AND HÜBNER<sup>1</sup> and extensive work on protein-protein interactions has been carried out during the last 20 years<sup>2</sup>. We have tried repeatedly to apply it to reversible reactions between two inorganic ions and have not always had great success. It was sometimes observed that when an anion traversed a band of a cation, a coloured zone was formed, but without any transformation of the cation band at the point where the anion traversed it, in spite of the fact that a well known complex had been formed.

This note contains a series of observations on systems in which we have a rather good knowledge of the complexing reactions that take place.

### Technique

A simple paper electrophoretic apparatus was used, in which Whatman No. r paper strips, 57 × 6 cm, were sandwiched between glass plates 3 mm thick (50 × 7 cm), which were clamped together.

A thin band of the metal ion was applied to the paper strip and a round spot of the anion placed in front of it, as shown schematically in Fig. 1a. Fig. 1b shows a typical positive result after applying a potential of 200 V for 1 h. When the metal ion traverses the anion as a straight unbroken line, we call this a negative result.

# **Results**

Interaction of Fc(III) with various inorganic anions in 0.1 N HCl. A 0.05 M solution of  $Fe^{3+}$  dissolved in 0.1 N HCl was placed as a fine line on a paper strip moistened with 0.1 N HCl. Then 0.1 N solutions of CNS<sup>-</sup>, I<sup>-</sup>, Br<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, F<sup>-</sup> or





NOTES

 $ClO_4^-$  were allowed to migrate through it and the band of Fe<sup>3+</sup> was made visible with ammonium sulphide.

Only with CNS<sup>-</sup> and F<sup>-</sup> could a disturbance of the Fe<sup>3+</sup> be observed. Here the strongly bound complexes clearly give a positive result while anions that either do not or poorly complex Fe(III) yield a negative result.

Interaction of  $Co(en)_3^{3+}$  with various anions in 0.1 N HCl. A 0.05 M solution of  $Co(en)_3^{3+}$  was allowed to migrate on paper moistened with 0.1 N HCl against spots of 0.1 N solutions of CNS<sup>-</sup>, I<sup>-</sup>, Br<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, F<sup>-</sup> and ClO<sub>4</sub><sup>-</sup>. The complex was made visible by spraying with ammonium sulphide. Positive results were obtained with SO<sub>4</sub><sup>2-</sup> and ClO<sub>4</sub><sup>-</sup>, which both form well known outer-sphere complexes with  $Co(en)_3^{3+}$ .

Interaction of Cd(II) with inorganic anions on paper moistened with various electrolytes. A 0.05 M solution of Cd(II) in the respective electrolyte (0.1 N) was allowed to migrate against a range of inorganic anions and the cadmium band detected with ammoniacal oxine in ethanol. The results are shown in Table I.

#### TABLE I

cross-electrophoresis of  $\mathbb{C}d^{a+}$  against various anions in different background electrolytes

| Background cl | ckground electrolyte                            |                                                                                            |  |
|---------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| o.t N HClO    | 0.1 N H <sub>2</sub> SO <sub>4</sub>            | o.t N HNO3                                                                                 |  |
|               |                                                 |                                                                                            |  |
|               |                                                 | -i                                                                                         |  |
| + (slight)    |                                                 | ÷                                                                                          |  |
|               |                                                 | <u> </u>                                                                                   |  |
|               | -                                               |                                                                                            |  |
|               |                                                 | _                                                                                          |  |
|               |                                                 |                                                                                            |  |
|               | Background el<br>o.t N HClO,<br>+ (slight)<br>- | Background electrolyte<br>o.t N HClO <sub>1</sub> o.t N H <sub>2</sub> SO <sub>4</sub><br> |  |

#### Discussion

The few experiments described above clearly illustrate that the only result that cross-electrophoresis can give in inorganic systems is to indicate when the metal ion changes its charge. In the experiments with Fe(III) in 0.1 N HCl, it is known that the Fe(III) exists mainly as FeCl<sup>2+</sup>. Thus, when the complexed chloride is substituted by Br<sup>-</sup> or I<sup>-</sup>, still yielding complexes of the type FeX<sup>2+</sup>, a negative result will be obtained, whereas when stronger complexing agents such as CNS<sup>-</sup> and F<sup>-</sup> produce a lower charged complex, a V-shaped notch appears in the Fe(III) band.

The experiments with  $Co(en)_3^{3+}$  show clearly that positive results can also be obtained when ion-pair formation (or outer-sphere complexing) reduces the charge of the metal ions, *i.e.*, the method is certainly of no use for detecting complexes.

In the experiments with Cd(II), when  $HClO_4$  or  $H_2SO_4$  is used as electrolyte, Cd(II) forms rather strong ion pairs with  $ClO_4^-$  or  $SO_4^{2-}$ , and hence there is no change in charge with Cl<sup>-</sup>, Br<sup>-</sup> and only a slight change with I<sup>-</sup>. On the other hand, the halides give a strongly positive result in  $HNO_3$ , which does not form strong ion pairs with Cd(II).

In conclusion, we would like to point out that cross-electrophoresis has no value in inorganic reactions for indicating complex formation. All that it indicates is a change of charge on the metal ion under the conditions of the experiment.

Laboratorio di Cromatografia del C.N.R., Via Romagnosi 18/A, Rome (Italy) VALERIA MOSINI M. LEDERER

1 W. GRASSMANN AND L. HÜBNER, Naturwissenschaften, 40 (1953) 272.

2 S. NAKAMURA, Cross-Electrophoresis, Its Principle and Applications, Elsevier, Amsterdam, 1966.

Received December 2nd, 1972